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Stency

Stency, is a lightweight, compact, and modular tensile tester series
capable of measuring the stress-strain behavior of various materials.

Bidirectional Pull

Stency is unique from other
tensile testers due to its bi-
directional pull leaving the
center of the sample at a fixed
position. This ensures that the
material experiences uniform
tensile stress at the center.

Variety of Sample Tests

Stency tensile testers are capable of
measuring loads for small to moderate
sample sizes of a wide range of
materials. Delicate materials like
carbon fibers, thin films, skin, and
threads can also be tested.

uniform stretching from both sides
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Customizable and Modular for Laboratory Environments

Stency is customizable for different
types of tests and environments.

Popular examples are shown here.

The Synchrotron & Beamline

Stency is equipped with portholes
for installation along a laser path or
accelerator beamline. Here, beams
of particles can be directed to
impact the center of a sample while

it is stretched.

Stress, strain, and temperature are the primary measurements,
but other devices may be mounted for enhanced functionality and
data collection. (e.g. cameras, spectrometers, etc.)

Sample Specifications

Load Capacity
Min. Sample Length
Stretch Range
Stretching Speed
Heating
Tester Dimensions

The bi-directional pull of
the Stency ensures that
the irradiated spot stays in
the center and undergoes
uniform stretching on both
sides. Any changes in the
material’s properties or
structure can be analyzed

W1100 x D150 x H150mm L

BEAM
SPOT

SYNCHROTRON STENCY

50 N/200 N
10-15 mm
90 mm
0.1-10 mm/s
Up to 200 °C

SAMPLE CHAMBER

SAMPLE

BEAMPIPE

The Synchrotron & Beamline
Stency can be customized as
desired. Gas flow chambers, high
or sub-zero (°C) temperature
options are available.
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Customizable and Modular for Laboratory Environments

Several other designs of the Stency are offered for different types of experiments.
Features can be combined and customized to fit client needs. For example, a Synchrotron
Stency can be designed that is bi-axial with a chamber for Nitrogen gas flow at 150 °C.

BI-AXIAL STENCY

The bi-axial Stency uses 4 actuators
and 8 sample clamps to stretch
sheets or films of materials radially
from the center. Typical load capacity
designs for the bi-axial Stency
include 200 N up to 1000 N.

IMMERSION STENCY

The Immersion Stency is used to measure
the tensile strength of materials in liquid
environments. These can range from
simple water to highly reactive chemicals.
This type of tester finds application in
medical research, materials development,
chemical industries, and other relevant
fields.

GAS FLOW STENCY

Gas Flow Stency testers are
equipped with gas inlets and
outlets to allow testing of
materials under the effect of
different gaseous environments.
These typically include gases
like nitrogen and argon.




User Interface & Controls

Stency systems come with a control unit and computer. The GUI for data acquisition and
control is easy to use, easy to understand, and versatile. Customizations and added
functionality are dependent on the exact Stency design.
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Stency in Literature

The following research was published in the January 2020 edition of the journal Chemical
Communications by the Okinawa Institute of Science and Technology Graduate University
(OIST) in Japan, and the Russian Academy of Sciences. The AcroEdge Stency is used to
center-stretch a mechanoresponsive polymer that produces luminescence when strained.
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Dynamic Cu'-based mechanophores used as cross-linkers in poly-
butylacrylates enable highly sensitive detection of mechanical
stress even at small strain (<50%) and stress (<0.1 MPa) values
via reversible changes in luminescence intensity. Such sensitivity is
superior to previously reported systems based on classical organic
mechanophores and it allows for direct visualization of mechanical

stress by imaging methods.

Fluxional (pyridinophane)Cu-based mechanophore

f ROYAL SOCIETY
OF CHEMISTRY

Highly sensitive mechano-controlled
luminescence in polymer films modified by
dynamic Cu'-based cross-linkers+
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Fig.1 (a) Emission spectra of Cul-cPBA during stretching. (b) Plot of
integrated photoluminescence intensity vs. strain of Cul-cPBA.
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The Stress-Strain Curve
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Areas under the Stress-Strain Curve

12
Toughness, area under the 10
loading curve.
8
0
Energy absorbed as a result of 0
applying a force to deform an E 6
elastic object (%] "
2
0
/0 5 10 15 20 25 30
STRAIN
12 —
Loading g
10
Heat Energy, area of hysteresis.
8
A Energy released as a result of
E 6 applying a force to deform an elastic
th object
4
2 Unloading
0,
<0 5 10 15 20 25 30
STRAIN
12 —
Loading g
Elastic Potential 10
Energy, 3
area under the unloading 9
curve. W g
o
&
Energy stored as a result 4
of applying a force to
deform an elastic object 0 Unloading
o 7’
<0 5 10 15 20 25 30

STRAIN

AcroEdge



Sample Data Analysis of Various Rubbers
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Higher slope in the SS curve corresponds to higher stiffness of the material. In this figure, ethylene propylene
rubber has higher stiffness than nitrile butyl rubber.
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STENCY . AcroEdge

COMPACT & LIGHTWEIGHT
TENSILE TESTER




>> CHECK OUT OUR NEW FATIGUE TESTER!

SYCLUS. AcroEdge

A COMPACT FATIGUE TESTER
FOR

POLYMERS & COMPOSITES

AcroEdge
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